Kinetic Analysis of Methane-Propane Hydrate Formation by the Use of Different Impellers

24Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the present study, the effect of different kinds of impellers with different baffles or no baffle was investigated. Up-pumping pitched blade turbine (PBTU) and Rushton turbine (RT) were the two types of impellers tested. The reactor was equipped with different designs of baffles: full, half and surface baffles, or no baffles. Single (PBTU or RT) and dual (PBTU/PBTU or RT/RT) use of impellers with full (FB), half (HB), surface (SB), and no baffle (NB) combinations formed two sets of 16 experiments. The first group of experiments was close to the equilibrium line (P = 26.5 bars and T = 8.5 °C), and the second group was deep in the equilibrium line (P = 24.5 bars and T = 2 °C). There was estimation of rate of hydrate formation, induction time, hydrate productivity, overall power consumption, split fraction, and separation factor. In both single and dual impellers, the results showed that RT experiments are better compared to PBTU in the rate of hydrate formation. The induction time is almost the same because we are deep in the equilibrium line while, hydrate productivity values are higher in PBTU compared to RT experiments. As a general view, RT experiments consume more energy compared to PBTU experiments.

Cite

CITATION STYLE

APA

Longinos, S. N., & Parlaktuna, M. (2021). Kinetic Analysis of Methane-Propane Hydrate Formation by the Use of Different Impellers. ACS Omega, 6(2), 1636–1646. https://doi.org/10.1021/acsomega.0c05615

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free