The effects of phototherapy and melanocytes on keratinocytes

13Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Phototherapy is widely used in the treatment of vitiligo. Previous studies have focused on the effects of ultraviolet (UV) radiation on melanocytes; however, the biological effects of phototherapy and melanocytes on keratinocytes remain to be elucidated. To investigate and assess the effects of clinically doses of broad band (BB)-UVA, narrow band (NB)-UVB and melanocytes on human keratinocytes in vitro, clinical doses of BB-UVA or NB-UVB radiation and human melanoma cell A375 co-culture were performed as stress divisors to HaCaT cells. Cell proliferation, expression of protease-activated receptor-2 (PAR-2) and nuclear factor E2-related factor 2 mRNA, lipid peroxidation and intracellular antioxidant level of keratinocytes were analyzed. It was demonstrated that UV radiation inhibited the proliferation of cells apart from following exposure to low dose (1 J/cm2) UVA. Medium dose (5 J/cm2) UVA radiation had no adverse effects on lipid peroxidation and increased antioxidant levels in HaCaT cells. Medium (200 mJ/cm2) and high (400 mJ/cm2) doses of UVB radiation induced cellular damage due to increased lipid peroxidation as indicated by levels of malondi-aldehyde. Furthermore, A375 co-culture treatment induced a similar effect on the lipid peroxidation of HaCaT as with low dose UVB radiation. Therefore, the results of the present study determined that clinical doses of BB-UVA and NB-UVB radiation had varying effects on proliferation and related protein levels in HaCaT cells. Co-culture with A375 had similar effects as those of low dose UVA and UVB radiation, in which the PAR-2 expression was significantly upregulated.

Cite

CITATION STYLE

APA

Tang, L., Wu, W., Fu, W., & Hu, Y. (2018). The effects of phototherapy and melanocytes on keratinocytes. Experimental and Therapeutic Medicine, 15(4), 3459–3466. https://doi.org/10.3892/etm.2018.5807

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free