Characterization of Poly(vinylidene Fluoride) Nanofiber-Based Electrolyte and Its Application to Dye-Sensitized Solar Cell with Natural Dyes

8Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The potential of dye-sensitized solar cells (DSSC) as an alternative to depleting fossil fuels has been investigated. To optimize performance and efficiency, the effectiveness of PVDF and PVDF nanofiber (NF) membrane-based electrolytes in suppressing solvent leakage and evaporation in liquid electrolyte systems was evaluated. SEM results for PVDF NF membranes showed the formation of a network with a three-dimensional structure with a diameter of 100–300 nm and an average thickness of 0.14 mm. The Infrared (IR) spectrum shows the electrolyte and polymer-PVDF interactions. Differential Scanning Calorimetry (DSC) curve shows the melting transition of PVDF NF 7.66% lower than PVDF. Efficiency and resistance of DSSC based on natural dyes as measured by multimeter and Electrochemical Impedance Spectroscopy (EIS) at a solar intensity of 100 mW/cm2 showed the highest efficiency of anthocyanin-based DSSC from telang (Clitoria ternatea L.) flower extract. Its use as a photosensitizer in an electrolyte system based on PVDF NF membranes resulted in an efficiency that was not significantly different from that of liquid electrolytes (1.69%).

Cite

CITATION STYLE

APA

Kusumawati, N., Setiarso, P., Santoso, A. B., Muslim, S., A’yun, Q., & Putri, M. M. (2023). Characterization of Poly(vinylidene Fluoride) Nanofiber-Based Electrolyte and Its Application to Dye-Sensitized Solar Cell with Natural Dyes. Indonesian Journal of Chemistry, 23(1), 113–126. https://doi.org/10.22146/ijc.75357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free