Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns

201Citations
Citations of this article
110Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lipoxygenases are ubiquitous enzymes in eukaryotes. In plants, lipoxygenases are involved in the synthesis of the hormone jasmonic acid that regulates plant responses to wounding and, in addition, is an inducer of tuberization in potato. We have isolated potato lipoxygenase cDNA clones. From their deduced amino acid sequences, three distinct classes are defined (Lox1, Lox2, and Lox3). They are encoded in gene families that display organ- specific expression, lox1 being expressed mostly in tubers and roots, lox2 in leaves, and lox3 in leaves and roots. Consistent with their organ-specific expression pattern, Lox1 expressed in bacteria preferentially uses as substrate linoleic acid, abundant in membrane lipids of tubers, whereas linolenic acid, prevalent in leaves, is the preferred substrate for the other two classes of lipoxygenase. Analyses on reaction products of the enzymes expressed in bacteria reveal that Lox1 primarily produces 9- hydroperoxides. In contrast, the jasmonic acid precursor, 13-hydroperoxylinolenic acid, is the major product of the action of Lox2 and Lox3 on linolenic acid. Upon wounding, the levels of Lox2 and Lox3 transcripts rise markedly in leaves. While Lox3 mRNA accumulation peaks as early as 30 min after wounding, Lox2 shows a steady increase over a 24-h time course, suggesting different roles for these lipoxygenase isoforms in the synthesis of the plant hormone jasmonic acid.

Cite

CITATION STYLE

APA

Royo, J., Vancanneyt, G., Pérez, A. G., Sanz, C., Störmann, K., Rosahl, S., & Sánchez-Serrano, J. J. (1996). Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. Journal of Biological Chemistry, 271(35), 21012–21019. https://doi.org/10.1074/jbc.271.35.21012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free