Natural language understanding approaches based on joint task of intent detection and slot filling for IoT voice interaction

44Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Internet of Things (IoT) based voice interaction system, as a new artificial intelligence application, provides a new human–computer interaction mode. The more intelligent and efficient communication approach poses greater challenges to the semantic understanding module in the system. Facing with the complex and diverse interactive scenarios in practical applications, the academia and the industry urgently need more powerful Natural Language Understanding (NLU) methods as support. Intent Detection and Slot Filling joint task, as one of the core sub-tasks in NLU, has been widely used in different human–computer interaction scenarios. In the current era of deep learning, the joint task of Intent Detection and Slot Filling has also changed from previous rule-based methods to deep learning-based methods. It is an important problem to explore how to realize the models of these tasks to be refined and targeted designed, and to make the Intent Detection task better serve the improvement of precision of Slot Filling task by connecting the before and after tasks. It has great significance for building a more humanized IoT voice interaction system. In this study, we designed two joint models to realize Intent Detection and Slot Filling joint task. For the Intent Detection type task, one is based on BiGRU-Att-CapsuleNet (hybrid-based model) and the other is based on the RCNN model. Both methods use the BiGRU-CRF model for the Slot Filling type task. The hybrid-based model can enhance the semantic capture capability of a single model. And by combining specialized models built independently for each task to achieve a complete joint task, it can be better to achieve optimal performance on each task. This study also carried out detailed comparative experiments of tasks and joint tasks on multiple datasets. Experiments show that the joint models have achieved competitive results in 7 typical datasets included in multiple scenarios in English and Chinese compared with other models.

Cite

CITATION STYLE

APA

Ni, P., Li, Y., Li, G., & Chang, V. (2020). Natural language understanding approaches based on joint task of intent detection and slot filling for IoT voice interaction. Neural Computing and Applications, 32(20), 16149–16166. https://doi.org/10.1007/s00521-020-04805-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free