Inhibitors of topoisomerase II (topo II) are clinically effective in the management of hematological malignancies and solid tumors. The efficacy of anti-tumor drugs targeting topo II is often limited by resistance and studies with in vitro cell culture models have provided several insights on potential mechanisms. Multidrug transporters that are involved in the efflux and consequently reduced cytotoxicity of diverse anti-tumor agents suggest that they play an important role in resistance to clinically active drugs. However, in clinical trials, modulating the multidrug-resistant phenotype with agents that inhibit the efflux pump has not had an impact. Since reduced drug accumulation per se is insufficient to explain tumor cell resistance to topo II inhibitors several studies have focused on characterizing mechanisms that impact on DNA damage mediated by drugs that target the enzyme. Mammalian topo IIa and topo IIβ isozymes exhibit similar catalytic, but different biologic, activities. Whereas topo IIa is associated with cell division, topo IIβ is involved in differentiation. In addition to site specific mutations that can affect drug-induced topo II-mediated DNA damage, post-translation modification of topo II primarily by phosphorylation can potentially affect enzyme-mediated DNA damage and the downstream cytotoxic response of drugs targeting topo II. Signaling pathways that can affect phosphorylation and changes in intracellular calcium levels/calcium dependent signaling that can regulate site-specific phosphorylation of topoisomerase have an impact on downstream cytotoxic effects of topo II inhibitors. Overall, tumor cell resistance to inhibitors of topo II is a complex process that is orchestrated not only by cellular pharmacokinetics but more importantly by enzymatic alterations that govern the intrinsic drug sensitivity. © 2013 Ganapathi and Ganapathi.
CITATION STYLE
Ganapathi, R. N., & Ganapathi, M. K. (2013). Mechanisms regulating resistance to inhibitors of topoisomerase II. Frontiers in Pharmacology, 4 AUG. https://doi.org/10.3389/fphar.2013.00089
Mendeley helps you to discover research relevant for your work.