It has long been known that for the paging problem in its standard form, competitive analysis cannot adequately distinguish algorithms based on their performance: there exists a vast class of algorithms which achieve the same competitive ratio, ranging from extremely naive and inefficient strategies (such as Flush-When-Full), to strategies of excellent performance in practice (such as Least-Recently-Used and some of its variants). A similar situation arises in the list update problem: in particular, under the cost formulation studied by Martínez and Roura [TCS 2000] and Munro [ESA 2000] every list update algorithm has, asymptotically, the same competitive ratio. Several refinements of competitive analysis, as well as alternative performance measures have been introduced in the literature, with varying degrees of success in narrowing this disconnect between theoretical analysis and empirical evaluation. In this paper we study these two fundamental online problems under the framework of bijective analysis [Angelopoulos, Dorrigiv and López-Ortiz, SODA 2007 and LATIN 2008]. This is an intuitive technique which is based on pairwise comparison of the costs incurred by two algorithms on sets of request sequences of the same size. Coupled with a well-established model of locality of reference due to Albers, Favrholdt and Giel [JCSS 2005], we show that Least-Recently-Used and Move-to-Front are the unique optimal algorithms for paging and list update, respectively. Prior to this work, only measures based on average-cost analysis have separated LRU and MTF from all other algorithms. Given that bijective analysis is a fairly stringent measure (and also subsumes average-cost analysis), we prove that in a strong sense LRU and MTF stand out as the best algorithms. Copyright © by SIAM.
CITATION STYLE
Angelopoulos, S., & Schweitzer, P. (2009). Paging and list update under bijective analysis. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1136–1145). Association for Computing Machinery (ACM). https://doi.org/10.1137/1.9781611973068.123
Mendeley helps you to discover research relevant for your work.