Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation

534Citations
Citations of this article
181Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Amphoterin is a protein enhancing process extension and migration in embryonic neurons and in tumor cells through binding to receptor for advanced glycation end products (RAGE), a multiligand transmembrane receptor. S100 proteins, especially S100B, are abundantly expressed in the nervous system and are suggested to function as cytokines with both neurotrophic and neurotoxic effects. However, the cell surface receptor for the cytokine function of S100B has not been identified. Here we show that two S100 family proteins, S100B and S100A1, activate RAGE in concert with amphoterin inducing neurite outgrowth and activation of transcription factor NF-κB. Furthermore, activation of RAGE by amphoterin and S100B promotes cell survival through increased expression of the anti-apoptotic protein Bcl-2. However, whereas nanomolar concentrations of S100B induce trophic effects in RAGE-expressing cells, micromolar concentrations of S100B induce apoptosis in an oxidant-dependent manner. Both trophic and toxic effects are specific for cells expressing full-length RAGE since cells expressing a cytoplasmic domain deletion mutant of RAGE are unresponsive to these stimuli. These findings suggest that activation of RAGE by multiple ligands is able to promote trophic effects whereas hyperactivation of RAGE signaling pathways promotes apoptosis. We suggest that RAGE is a signal-transducing receptor for both trophic and toxic effects of S100B.

Cite

CITATION STYLE

APA

Huttunen, H. J., Kuja-Panula, J., Sorci, G., Agneletti, A. L., Donato, R., & Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. Journal of Biological Chemistry, 275(51), 40096–40105. https://doi.org/10.1074/jbc.M006993200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free