The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin

26Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Background: T-2 toxin poses a great threat to human health because it has the highest toxicity of the currently known trichothecene mycotoxins. To understand the in vivo toxicity and transformation mechanism of T-2 toxin, we investigated the role of one kind of principal phase I drug-metabolizing enzymes (cytochrome P450 [CYP450] enzymes) on the metabolism of T-2 toxin, which are crucial to the metabolism of endogenous substances and xenobiotics. We also investigated carboxylesterase, which also plays an important role in the metabolism of toxic substances. Methods: A chemical inhibition method and a recombinant method were employed to investigate the metabolism of the T-2 toxin by the CYP450 enzymes, and a chemical inhibition method was used to study carboxylesterase metabolism. Samples incubated with human liver microsomes were analyzed by high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC- QqQ MS) after a simple pretreatment. Results: In the presence of a carboxylesterase inhibitor, only 20 % T-2 toxin was metabolized. When CYP enzyme inhibitors and a carboxylesterase inhibitor were both present, only 3 % of the T-2 toxin was metabolized. The contributions of the CYP450 enzyme family to T-2 toxin metabolism followed the descending order CYP3A4, CYP2E1, CYP1A2, CYP2B6 or CYP2D6 or CYP2C19. Conclusion: Carboxylesterase and CYP450 enzymes are of great importance in T-2 toxin metabolism, in which carboxylesterase is predominant and CYP450 has a subordinate role. CYP3A4 is the principal member of the CYP450 enzyme family responsible for T-2 toxin metabolism. The primary metabolite produced by carboxylesterase is HT-2, and the main metabolite produced by CYP 3A4 is 3'-OH T-2. The different metabolites show different toxicities. Our results will provide useful data concerning the toxic mechanism, the safety evaluation, and the health risk assessment of T-2 toxin.

Cite

CITATION STYLE

APA

Lin, N. N., Chen, J., Xu, B., Wei, X., Guo, L., & Xie, J. W. (2015). The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin. Military Medical Research, 2(1). https://doi.org/10.1186/s40779-015-0041-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free