Epigenetic scores for the circulating proteome as tools for disease prediction

39Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNAm signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample, (Generation Scotland; n=9,537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore – disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.

Cite

CITATION STYLE

APA

Gadd, D. A., Hillary, R. F., McCartney, D. L., Zaghlool, S. B., Stevenson, A. J., Cheng, Y., … Marioni, R. E. (2022). Epigenetic scores for the circulating proteome as tools for disease prediction. ELife, 11. https://doi.org/10.7554/eLife.71802

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free