MicroRNAs (miRNAs/miRs) are key regulators of liver metabolism, while toxic bile acids participate in the development of several liver diseases. We previously demonstrated that deoxycholic acid (DCA), a cytotoxic bile acid implicated in the pathogenesis of non-alcoholic fatty liver disease, inhibits miR-21 expression in hepatocytes. Here, we investigated the mechanisms by which DCA modulates miR-21 and whether miR-21 contributes for DCA-induced cytotoxicity. DCA inhibited miR-21 expression in primary rat hepatocytes in a dose-dependent manner, and increased miR-21 pro-apoptotic target programmed cell death 4 (PDCD4) and apoptosis. Both miR-21 overexpression and PDCD4 silencing hampered DCA-induced cell death. Further, DCA decreased NF-κB activity, shown to represent an upstream mechanism leading to modulation of the miR-21/PDCD4 pathway. In fact, NF-κB overexpression or constitutive activation halted miR-21-dependent apoptosis by DCA while opposite results were observed upon NF-κB inhibition. In turn, DCA-induced oxidative stress resulted in caspase-2 activation and NF-κB/miR-21 inhibition, in a PIDD-dependent manner. Finally, modulation of the NF-κB/miR-21/PDCD4 pro-apoptotic pathway by DCA was also shown to occur in the rat liver in vivo. These signalling circuits may constitute appealing targets for bile acid-associated liver pathologies.
CITATION STYLE
Rodrigues, P. M., Afonso, M. B., Simaõ, A. L., Borralho, P. M., Rodrigues, C. M. P., & Castro, R. E. (2015). Inhibition of NF-κ B by deoxycholic acid induces miR-21/PDCD4-dependent hepatocelular apoptosis. Scientific Reports, 5. https://doi.org/10.1038/srep17528
Mendeley helps you to discover research relevant for your work.