An Object-Based River Extraction Method via Optimized Transductive Support Vector Machine for Multi-Spectral Remote-Sensing Images

25Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

The accurate extraction of rivers is closely related to agriculture, socio-economic, environment, and ecology. It helps us to pre-warn serious natural disasters such as floods, which leads to massive losses of life and property. With the development and popularization of remote-sensing and information technologies, a great number of river-extraction methods have been proposed. However, most of them are vulnerable to noise interference and perform inefficient in a big data environment. To address these problems, a river extraction method is proposed based on adaptive mutation particle swarm optimization (PSO) support vector machine (AMPSO-SVM). First, three features, the spectral information, normalized difference water index (NDWI), and spatial texture entropy, are considered in feature space construction. It makes the objects with the same spectrum more distinguishable, then the noise interference could be resisted effectively. Second, in order to address the problems of premature convergence and inefficient iteration, a mutation operator is introduced to the PSO algorithm. This processing makes transductive SVM obtain optimal parameters quickly and effectively. The experiments are conducted on GaoFen-1 multispectral remote-sensing images from Yellow River. The results show that the proposed method performs better than the existed ones, including PCA, KNN, basic SVM, and PSO-SVM, in terms of overall accuracy and the kappa coefficient. Besides, the proposed method achieves convergence rate faster than the PSO-SVM method.

References Powered by Scopus

LIBSVM: A Library for support vector machines

28231Citations
N/AReaders
Get full text

Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery

4183Citations
N/AReaders
Get full text

Lakes and reservoirs as regulators of carbon cycling and climate

2147Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Dual attention deep fusion semantic segmentation networks of large-scale satellite remote-sensing images

66Citations
N/AReaders
Get full text

The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery

57Citations
N/AReaders
Get full text

SSCNet: A Spectrum-Space Collaborative Network for Semantic Segmentation of Remote Sensing Images

30Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Li, X., Lyu, X., Tong, Y., Li, S., & Liu, D. (2019). An Object-Based River Extraction Method via Optimized Transductive Support Vector Machine for Multi-Spectral Remote-Sensing Images. IEEE Access, 7, 46165–46175. https://doi.org/10.1109/ACCESS.2019.2908232

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 12

75%

Researcher 2

13%

Professor / Associate Prof. 1

6%

Lecturer / Post doc 1

6%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 7

47%

Computer Science 3

20%

Social Sciences 3

20%

Engineering 2

13%

Save time finding and organizing research with Mendeley

Sign up for free