Markov chain monte carlo: An introduction for epidemiologists

141Citations
Citations of this article
286Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Markov Chain Monte Carlo (MCMC) methods are increasingly popular among epidemiologists. The reason for this may in part be that MCMC offers an appealing approach to handling some difficult types of analyses. Additionally, MCMC methods are those most commonly used for Bayesian analysis. However, epidemiologists are still largely unfamiliar with MCMC. They may lack familiarity either with he implementation of MCMC or with interpretation of the resultant output. As with tutorials outlining the calculus behind maximum likelihood in previous decades, a simple description of the machinery of MCMC is needed. We provide an introduction to conducting analyses with MCMC, and show that, given the same data and under certain model specifications, the results of an MCMC simulation match those of methods based on standard maximum-likelihood estimation (MLE). In addition, we highlight examples of instances in which MCMC approaches to data analysis provide a clear advantage over MLE. We hope that this brief tutorial will encourage epidemiologists to consider MCMC approaches as part of their analytic tool-kit. © The Author 2013. All rights reserved.

Cite

CITATION STYLE

APA

Hamra, G., MacLehose, R., & Richardson, D. (2013). Markov chain monte carlo: An introduction for epidemiologists. International Journal of Epidemiology, 42(2), 627–634. https://doi.org/10.1093/ije/dyt043

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free