A Model of Double Coronal Hard X-Ray Sources in Solar Flares

  • Kong X
  • Ye J
  • Chen B
  • et al.
7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how these X-ray-emitting electrons are accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bidirectional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to >100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares.

Cite

CITATION STYLE

APA

Kong, X., Ye, J., Chen, B., Guo, F., Shen, C., Li, X., … Giacalone, J. (2022). A Model of Double Coronal Hard X-Ray Sources in Solar Flares. The Astrophysical Journal, 933(1), 93. https://doi.org/10.3847/1538-4357/ac731b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free