The effects of anisotropic viscosity on turbulence and heat transport in the intracluster medium

49Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii magnetohydrodynamics (MHD) simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBI's non-linear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool-core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non-cool-core states: additional sources of intracluster turbulence, such as can be produced by active galactic nuclei feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non-cool-core state. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Cite

CITATION STYLE

APA

Parrish, I. J., McCourt, M., Quataert, E., & Sharma, P. (2012). The effects of anisotropic viscosity on turbulence and heat transport in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 422(1), 704–718. https://doi.org/10.1111/j.1365-2966.2012.20650.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free