Compositional and functional profiling of the rhizosphere microbiomes of the invasive weed Ageratina adenophora and native plants

6Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The rhizosphere soil microbiome (RSM) plays an important role in the nutritional metabolism of the exotic weed Ageratina adenophora. However, our understanding of the composition and metabolic activity of this microbiome is limited. We used high- throughput sequencing of bacterial 16S rRNA genes and fungal internal transcribed spacer fragments in combination with transcriptome analysis to compare the com- position and metabolic features of the RSMs of A. adenophora and the native plant species Artemisia indica and Imperata cylindrica. A. indica cohabitates with the weed and I. cylindrica grows in uninvaded soil areas. We found fungi belonging to the phyla Ascomycota and Basidiomycota and bacteria belonging to the phyla Proteobacteria, Acidobacteria and Bacteroidetes were highly abundant in the RSMs of A. adenophora and both native plant species. The RSM of A. adenophora differed to varying degrees in the relative abundances of bacterial and fungal phyla and genera, and in levels of expression of functional genes from those of both the native species. The RSM of A. adenophora was more metabolically active than both of these, as indicated by marked increases in the expression levels of genes associated with cell wall, membrane, and envelope biogenesis, energy production and conversion, and the transport and metabolism of carbohydrates, amino acids, coenzymes, nucleotides, and secondary metabolites. Ascomycota and Basidiomycota contributed most significantly to these differences. The composition and metabolic activities of A. adenophora RSM differed less to the RSM of A. indica than to the RSM of I. cylindrica. Fungal communities contributed most to the metabolic genes in the RSM of A. adenophora. These included the arbuscular mycorrhizal fungi Glomeromycota. The different relative abundances in the RSMs of these three plant populations may explain why A. adenophora is more successful in colonizing soils than the two native populations.

Cite

CITATION STYLE

APA

Xia, Y., Dong, M., Yu, L., Kong, L., Seviour, R., & Kong, Y. (2021). Compositional and functional profiling of the rhizosphere microbiomes of the invasive weed Ageratina adenophora and native plants. PeerJ, 9. https://doi.org/10.7717/peerj.10844

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free