Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs

11Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Mammalian olfactory receptors (ORs) are subject to a remarkable but poorly understood regime of transcriptional regulation, whereby individual olfactory neurons each express only one allele of a single member of the large OR gene family.Results: We performed a rigorous search for enriched sequence motifs in the largest dataset of OR promoter regions analyzed to date. We combined measures of cross-species conservation with databases of known transcription factor binding sites and ab initio motif-finding algorithms. We found strong enrichment of binding sites for the O/E family of transcription factors and for homeodomain factors, both already known to be involved in the transcriptional control of ORs, but did not identify any novel enriched sequences. We also found that TATA-boxes are present in at least a subset of OR promoters.Conclusions: Our rigorous approach provides a template for the analysis of the regulation of large gene families and demonstrates some of the difficulties and pitfalls of such analyses. Although currently available bioinformatics methods cannot detect all transcriptional regulatory elements, our thorough analysis of OR promoters shows that in the case of this gene family, experimental approaches have probably already identified all the binding factors common to large fractions of OR promoters. © 2011 Young et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Young, J. M., Luche, R. M., & Trask, B. J. (2011). Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs. BMC Genomics, 12. https://doi.org/10.1186/1471-2164-12-561

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free