In this paper we present a machine learning system that finds the scope of negation in biomedical texts. The system consists of two memory-based engines, one that decides if the tokens in a sentence are negation signals, and another that finds the full scope of these negation signals. Our approach to negation detection differs in two main aspects from existing research on negation. First, we focus on finding the scope of negation signals, instead of determining whether a term is negated or not. Second, we apply supervised machine learning techniques, whereas most existing systems apply rule-based algorithms. As far as we know, this way of approaching the negation scope finding task is novel. © 2008 Association for Computational Linguistics.
CITATION STYLE
Morante, R., Liekens, A., & Daelemans, W. (2008). Learning the scope of negation in biomedical texts. In EMNLP 2008 - 2008 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference: A Meeting of SIGDAT, a Special Interest Group of the ACL (pp. 715–724). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1613715.1613805
Mendeley helps you to discover research relevant for your work.