Fos and Jun form a heterodimeric complex that regulates gene transcription by binding to the activator protein-1 (AP-1) DNA sequence motif. Previously, we demonstrated that the DNA-binding activity of Fos and Jun is regulated in vitro by a novel redox (reduction-oxidation) mechanism. Reduction of a conserved cysteine (cys) residue in the DNA-binding domains of Fos and Jun by chemical reducing agents or by a nuclear redox factor stimulates DNA-binding activity. Here, we describe purification and characterization of a 37 kDa protein (Ref-1) corresponding to the redox factor. Although Ref-1 does not bind to the AP-1 site in association with Fos and Jun, it partially copurifies with a subset of AP-1 proteins. Purified Ref-1 protein stimulates AP-1 DNA-binding activity through the conserved Cys residues in Fos and Jun, but it does not alter the DNA-binding specificity of Fos and Jun. Ref-1 may represent a novel redox component of the signal transduction processes that regulate eukaryotic gene expression.
CITATION STYLE
Xanthoudakis, S., & Curran, T. (1992). Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. The EMBO Journal, 11(2), 653–665. https://doi.org/10.1002/j.1460-2075.1992.tb05097.x
Mendeley helps you to discover research relevant for your work.