Positional isomerism in the N^N ligand: How much difference does a methyl group make in [Cu(P^P)(N^N)]+ complexes?

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The synthesis and structural characterization of 5,6′-dimethyl-2,2′-bipyridine (5,6′-Me2bpy) are reported, along with the preparations and characterizations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether, xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene). Single-crystal X-ray structure determinations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] confirmed distorted tetrahedral copper(I) coordination environments with the 5-methylpyridine ring of 5,6′-Me2bpy directed towards the (C6H4)2O unit of POP or the xanthene unit of xantphos. In the xantphos case, this preference may be attributed to C-H⋯ π interactions involving both the 6-CH unit and the 5-methyl substituent in the 5-methylpyridine ring and the arene rings of the xanthene unit. 1H NMR spectroscopic data indicate that this ligand orientation is also preferred in solution. In solution and the solid state, [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are yellow emitters, and, for powdered samples, photoluminescence quantum yields (PLQYs) are 12 and 11%, respectively, and excited-state lifetimes are 5 and 6 μs, respectively. These values are lower than PLQY and τ values for [Cu(POP)(6,6′-Me2bpy)][PF6] and [Cu(xantphos)(6,6′-Me2bpy)][PF6], and the investigation points to the 6,6′-dimethyl substitution pattern in the bpy ligand being critical for enhancement of the PLQY.

Cite

CITATION STYLE

APA

Brunner, F., Prescimone, A., Constable, E. C., & Housecroft, C. E. (2020). Positional isomerism in the N^N ligand: How much difference does a methyl group make in [Cu(P^P)(N^N)]+ complexes? Molecules, 25(12). https://doi.org/10.3390/molecules25122760

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free