Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises' requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men's shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.
CITATION STYLE
Zhang, X., Wang, L., & Chen, Y. (2019). Carbon emission reduction of apparel material distribution based on multi-objective genetic algorithm (NSGA-II). Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092571
Mendeley helps you to discover research relevant for your work.