Theoretical determination of the OH-initiated oxidation rate constants of α, ω -dialkoxyfluoropolyethers

6Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this work, we have calculated rate constants for the tropospheric reaction between the OH radical and two α, ω-dialkoxyfluoropolyethers, namely R-(OCF2)2-OR, with R = C 2 H 5 and CH(CH3)2. In terms of low atmospheric impact, dialkoxyfluoropolyethers are considered to be a promising class of the hydrofluoropolyethers family, although very little is still known about their reactivity. Calculation of the rate constants for these challenging molecular systems was performed by utilizing a cost-effective protocol for bimolecular hydrogen abstraction reactions based on multiconformer transition state theory and employing computationally feasible M08-HX electronic structure calculations. Within the protocol’s uncertainties and approximations, the results maintain the tendencies of our own previous work: (1) OH-initiated oxidation rate constants of dialkoxyfluoropolyethers involving the ethyl and isopropyl groups have the same order of magnitude, which in turn is approximately 10 times larger than the rate constants involving dimethoxyfluoropolyethers; (2) the branching ratios concerning the α-hydrogens are much larger than the ones concerning the β-hydrogens; and (3) the chain length is seen to have a small effect on the rate constant, which is consistent with experimental work.

Cite

CITATION STYLE

APA

Viegas, L. P. (2019). Theoretical determination of the OH-initiated oxidation rate constants of α, ω -dialkoxyfluoropolyethers. Theoretical Chemistry Accounts, 138(5). https://doi.org/10.1007/s00214-019-2436-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free