Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat

9Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Visual cortex (VC) over-activation analysed by evoked responses has been demonstrated in congenital deafness and after long-term acquired hearing loss in humans. However, permanent hearing deprivation has not yet been explored in animal models. Thus, the present study aimed to examine functional and molecular changes underlying the visual and auditory cross-modal reaction. For such purpose, we analysed cortical visual evoked potentials (VEPs) and the gene expression (RT-qPCR) of a set of markers for neuronal activation (c-Fos) and activity-dependent homeostatic compensation (Arc/Arg3.1). To determine the state of excitation and inhibition, we performed RT-qPCR and quantitative immunocytochemistry for excitatory (receptor subunits GluA2/3) and inhibitory (GABAA-α1, GABAB-R2, GAD65/67 and parvalbumin-PV) markers. VC over-activation was demonstrated by a significant increase in VEPs wave N1 and by up-regulation of the activity-dependent early genes c-Fos and Arc/Arg3.1 (thus confirming, by RT-qPCR, our previously published immunocytochemical results). GluA2 gene and protein expression were significantly increased in the auditory cortex (AC), particularly in layers 2/3 pyramidal neurons, but inhibitory markers (GAD65/67 and PV-GABA interneurons) were also significantly upregulated in the AC, indicating a concurrent increase in inhibition. Therefore, after permanent hearing loss in the rat, the VC is not only over-activated but also potentially balanced by homeostatic regulation, while excitatory and inhibitory markers remain imbalanced in the AC, most likely resulting from changes in horizontal intermodal regulation.

Cite

CITATION STYLE

APA

Pernia, M., Díaz, I., Colmenárez-Raga, A. C., Rivadulla, C., Cudeiro, J., Plaza, I., & Merchán, M. A. (2020). Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Structure and Function, 225(1), 129–148. https://doi.org/10.1007/s00429-019-01991-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free