Gas-coupled receptors signaling through cAMP provide a key mechanism for the sensitization of nociceptive sensory neurons, and the cAMP effector Epac has been implicated in the transition from acute to chronic pain. Epac exerts its effects through Rap1 and protein kinase C (PKC). To identify targets of Epac-PKC signaling in sensory neurons of the mouse dorsal root ganglion (DRG), we profiled PKC substrate proteins phosphorylated in response to the activation of Epac with the proinflammatory prostaglandin E2 (PGE2). A prominent Epac-dependent phospho-protein band induced by PGE2 was identified by mass spectrometry as the mitochondrial enzyme pyruvate dehydrogenase (Pdha1). In dissociated DRG from both males and females, the recruitment of Pdha1 to phospho-protein fractions was rapidly induced by PGE2 and prevented by selective inhibition of Epac2. Epac activation increased mitochondrial respiration, consistent with an increase in Pdha1 function mediated by Epac2. Hindpaw injection of PGE2 induced heat hyperalgesia in males and females, but Pdha1 phosphorylation occurred only in males. Hyperalgesia was attenuated in males but not in females by systemic inhibition of Epac2, and also by a mitochondrial membrane potential uncoupler, dinitrophenol, supporting a role for mitochondrial regulation in acute hyperalgesia. These findings identify a mechanism for the regulation of mitochondrial function by Epac2 that contributes to acute inflammatory hyperalgesia in male mice. Systemic administration of the cyclooxygenase 2 inhibitor celecoxib suppressed both PGE2-induced heat hyperalgesia and Pdha1 phosphorylation in DRG of males but not females, suggesting that prostaglandin synthesis within the DRG mediates the phosphorylation of Pdha1 in response to hindpaw insult.
CITATION STYLE
Goode, D. J., & Molliver, D. C. (2021). Regulation of mitochondrial function by Epac2 contributes to acute inflammatory hyperalgesia. Journal of Neuroscience, 41(13), 2883–2898. https://doi.org/10.1523/JNEUROSCI.2368-20.2021
Mendeley helps you to discover research relevant for your work.