Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.

Cite

CITATION STYLE

APA

Liu, C., Henning-Knechtel, A., Österlund, N., Wu, J., Wang, G., Gräslund, R. A. O., … Luo, J. (2023). Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations. Small, 19(37). https://doi.org/10.1002/smll.202206232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free