Background: Hypoxia Inducible Factor 3 Alpha Subunit (HIF3A) DNA has been demonstrated to be associated with obesity in the methylation level, and it also has a Body Mass Index (BMI)-independent association with plasma alanine aminotransferase (ALT). However, the relation among obesity, plasma ALT, HIF3A polymorphism and methylation remains unclear. This study aims to identify the association between HIF3A polymorphism and plasma ALT, and further to determine whether the effect of HIF3A polymorphism on ALT could be modified by obesity or mediated by DNA methylation. Methods: The HIF3A rs3826795 polymorphism was genotyped in a case-control study including 2030 Chinese children aged 7-18 years (705 obese cases and 1325 non-obese controls). Furthermore, the HIF3A DNA methylation of the peripheral blood was measured in 110 severely obese children and 110 age- and gender- matched normal-weight controls. Results: There was no overall association between the HIF3A rs3826795 polymorphism and ALT. A significant interaction between obesity and rs3826795 in relation with ALT was found (P inter = 0.042), with rs3826795 G-allele number elevating ALT significantly only in obese children (β' = 0.075, P = 0.037), but not in non-obese children (β' = -0.009, P = 0.741). Additionally, a mediation effect of HIF3A methylation was found in the association between the HIF3A rs3826795 polymorphism and ALT among obese children (β' = 0.242, P = 0.014). Conclusion: This is the first study to report the interaction between obesity and HIF3A gene in relation with ALT, and also to reveal a mediation effect among the HIF3A polymorphism, methylation and ALT. This study provides new evidence to the function of HIF3A gene, which would be helpful for future risk assessment and personalized treatment of liver diseases.
CITATION STYLE
Wang, S., Song, J., Yang, Y., Zhang, Y., Chawla, N. V., Ma, J., & Wang, H. (2017). Interaction between obesity and the Hypoxia Inducible Factor 3 Alpha Subunit rs3826795 polymorphism in relation with plasma alanine aminotransferase. BMC Medical Genetics, 18(1). https://doi.org/10.1186/s12881-017-0437-0
Mendeley helps you to discover research relevant for your work.