Do the neural circuits for reading vary across culture? Reading of visually complexwriting systems such as Chinese has been proposed to rely on areas outside the classical left-hemisphere network for alphabetic reading. Here, however, we show that, once potential confounds in cross-cultural comparisons are controlled for by presenting handwritten stimuli to both Chinese and French readers, the underlying network for visual word recognition may be more universal than previously suspected. Using functional magnetic resonance imaging in a semantic task with words written in cursive font,we demonstrate that two universal circuits, a shape recognition system (reading by eye) and a gesture recognition system (reading by hand), are similarly activated and show identical patterns of activation and repetition priming in the two language groups. These activations cover most of the brain regions previously associated with culture-specific tuning.Our results point to an extended reading network that invariably comprises the occipitotemporal visual word-form system, which is sensitive to well-formed static letter strings, and a distinct left premotor region, Exner's area,which is sensitive to the forward or backward direction with which cursive letters are dynamically presented. These findings suggest that cultural effects in readingmerelymodulate a fixed set of invariantmacroscopic brain circuits, depending on surface features of orthographies.
CITATION STYLE
Nakamura, K., Kuo, W. J., Pegado, F., Cohen, L., Tzeng, O. J. L., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20762–20767. https://doi.org/10.1073/pnas.1217749109
Mendeley helps you to discover research relevant for your work.