The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize d-xylose

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: With d-xylose being the second most abundant sugar in nature, its conversion into products could significantly improve biomass-based process economy. There are two well-studied phosphorylative pathways for d-xylose metabolism. One is isomerase pathway mainly found in bacteria, and the other one is oxo-reductive pathway that always exists in fungi. Except for these two pathways, there are also non-phosphorylative pathways named xylose oxidative pathways and they have several advantages over traditional phosphorylative pathways. In Myceliophthora thermophila, d-xylose can be metabolized through oxo-reductive pathway after plant biomass degradation. The survey of non-phosphorylative pathways in this filamentous fungus will offer a potential way for carbon-efficient production of fuels and chemicals using d-xylose. Results: In this study, an alternative for utilization of d-xylose, the non-phosphorylative Weimberg pathway was established in M. thermophila. Growth on d-xylose of strains whose d-xylose reductase gene was disrupted, was restored after overexpression of the entire Weimberg pathway. During the construction, a native d-xylose dehydrogenase with highest activity in M. thermophila was discovered. Here, M. thermophila was also engineered to produce 1,2,4‐butanetriol using d-xylose through non-phosphorylative pathway. Afterwards, transcriptome analysis revealed that the d-xylose dehydrogenase gene was obviously upregulated after deletion of d-xylose reductase gene when cultured in a d-xylose medium. Besides, genes involved in growth were enriched in strains containing the Weimberg pathway. Conclusions: The Weimberg pathway was established in M. thermophila to support its growth with d-xylose being the sole carbon source. Besides, M. thermophila was engineered to produce 1,2,4‐butanetriol using d-xylose through non-phosphorylative pathway. To our knowledge, this is the first report of non-phosphorylative pathway recombinant in filamentous fungi, which shows great potential to convert d-xylose to valuable chemicals.

Cite

CITATION STYLE

APA

Liu, D., Zhang, Y., Li, J., Sun, W., Yao, Y., & Tian, C. (2023). The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize d-xylose. Biotechnology for Biofuels and Bioproducts, 16(1). https://doi.org/10.1186/s13068-023-02266-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free