White dwarfs with a surface electrical charge distribution: equilibrium and stability

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The equilibrium configuration and the radial stability of white dwarfs composed of charged perfect fluid are investigated. These cases are analyzed through the results obtained from the solution of the hydrostatic equilibrium equation. We regard that the fluid pressure and the fluid energy density follow the relation of a fully degenerate electron gas. For the electric charge distribution in the object, we consider that it is centralized only close to the white dwarfs’ surfaces. We obtain larger and more massive white dwarfs when the total electric charge is increased. To appreciate the effects of the electric charge in the structure of the star, we found that it must be in the order of 1020[C] with which the electric field is about 1016[V/cm]. For white dwarfs with electric fields close to the Schwinger limit, we obtain masses around 2M⊙. We also found that in a system constituted by charged static equilibrium configurations, the maximum mass point found on it marks the onset of the instability. This indicates that the necessary and sufficient conditions to recognize regions constituted by stable and unstable equilibrium configurations against small radial perturbations are respectively dM/ dρc> 0 and dM/ dρc< 0.

Cite

CITATION STYLE

APA

Carvalho, G. A., Arbañil, J. D. V., Marinho, R. M., & Malheiro, M. (2018). White dwarfs with a surface electrical charge distribution: equilibrium and stability. European Physical Journal C, 78(5). https://doi.org/10.1140/epjc/s10052-018-5901-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free