This paper presents the lane-merging strategy for self-driving cars in dense traffic using the Stackelberg game approach. From the perspective of the self-driving car, in order to make sufficient space to merge into the next lane, a self-driving car should interact with the vehicles in the next lane. In heavy traffic, where the possible actions of the vehicle are pretty limited, it is possible to conjecture the driving intentions of the vehicles from their behaviors. For example, by observing the speed changes of the human-driver in the next lane, the self-driving car can estimate its driving intention in real time, much in the same way of a human driver. We use the principle of Stackelberg competition to make the optimal decision for the self-driving car based on the predicted reaction of the interacting vehicles in the next lane. In this way, according to the traffic circumstances, a self-driving car can decide whether to merge or not. In addition, by limiting the number of interacting vehicles, the computational burden is manageable enough to be implemented in production vehicles. We verify the efficiency of the proposed method through the case studies for different test scenarios, and the test results show that our approach is closer to the human-like decision-making strategy, as compared to the conventional rule-based method.
CITATION STYLE
Ji, K., Orsag, M., & Han, K. (2021). Lane-merging strategy for a self-driving car in dense traffic using the stackelberg game approach. Electronics (Switzerland), 10(8). https://doi.org/10.3390/electronics10080894
Mendeley helps you to discover research relevant for your work.