Chinese cabbage is one of the most important leafy vegetables widely used in East Asian cuisines. The glucosinolate (GSL) accumulation and transcript levels of 7 transcription factors (Dof1.1, IQD1-1, MYB28, MYB29, MYB34, MYB51, and MYB122, and their isoforms) involved in the biosynthesis of aliphatic and indolic glucosinolates (GSLs) were analyzed at different stages of Chinese cabbage (Brassica rapa ssp. pekinensis) seedlings under light and dark conditions using high performance liquid chromatography and quantitative real time PCR. During seedling development, transcription of almost all transcription factors under light conditions was higher expressed than under dark conditions. Five aliphatic GSLs (progoitrin, sinigrin, glucoalyssin, gluconapin, and glucobrassicanapin) and four indolic GSLs (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrasscin) were detected. Total GSL contents under light conditions 6, 8, and 10 days after sowing (DAS) were 3.2-, 3.9-, and 6.9-fold higher, respectively than those of dark conditions. Interestingly, total GSL contents 2 {85.4 μmol/g dry weight (DW)} to 10 (7.74 μmol/g DW) DAS under dark conditions were gradually decreased. In this study, our results suggest that light affects the levels of GSL in Chinese cabbage seedlings. These results could be useful for obtaining cabbage varieties rich in GSLs.
CITATION STYLE
Kim, Y. B., Chun, J. H., Kim, H. R., Kim, S. J., Lim, Y. P., & Park, S. U. (2014). Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Natural Product Communications, 9(4), 533–537. https://doi.org/10.1177/1934578x1400900428
Mendeley helps you to discover research relevant for your work.