Six-coordinated heme groups are involved in a large variety of electron transfer reactions because of their ability to exist in both the ferrous (Fe2+) and ferric (Fe3+) state without any large differences in structure. Our studies on hemes coordinated by two histidines (bis-His) and hemes coordinated by histidine and methionine (His-Met) will be reviewed. In both of these coordination environments, the heme core can exhibit ferric low spin (electron paramagnetic resonance EPR) signals with large g max values (also called Type I, highly anisotropic low spin, or highly axial low spin, HALS species) as well as rhombic EPR (Type II) signals. In bis-His coordinated hemes rhombic and HALS envelopes are related to the orientation of the His groups with respect to each other such that (i) parallel His planes results in a rhombic signal and (ii) perpendicular His planes results in a HALS signal. Correlation between the structure of the heme and its ligands for heme with His-Met axial ligation and ligand-field parameters, as derived from a large series of cytochrome c variants, show, however, that for such a combination of axial ligands there is no clearcut difference between the large gmax and the "small ganisotropy" cases as a result of the relative Met-His arrangements. Nonetheless, a new linear correlation links the average shift 〈δ〉 of the heme methyl groups with the gmax values. © 2009 Wiley Periodicals, Inc.
CITATION STYLE
Zoppellaro, G., Bren, K. L., Ensign, A. A., Harbitz, E., Kaur, R., Hersleth, H. P., … Andersson, K. K. (2009). Studies of ferric heme proteins with highly anisotropic/highly axial low spin (S = 1/2) electron paramagnetic resonance signals with bis-histidine and histidine-methionine axial iron coordination. Biopolymers - Peptide Science Section. https://doi.org/10.1002/bip.21267
Mendeley helps you to discover research relevant for your work.