Ig-Hepta is a member of a new subfamily of the heptahelical receptors and has an unusually long N terminus extending toward the extracellular side of the plasma membrane. Pulse-chase experiments in 293T cells using antisera specifically recognizing its N- and C-terminal regions demonstrated that Ig-Hepta is coreglycosylated cotranslationally and proteolytically processed into a two-chain form in the endoplasmic reticulum, followed by maturation of ollgosaccharide chains and dimerization. The cleavage occurs at two highly conserved sites: one in a "SEA" module (a module first identified in sperm protein, enterokinase, and agrin) near the N terminus and the other in the stalk region preceding the first transmembrane span, generating ∼20-, 130-, and 32-kDa fragments. The latter two remain tightly associated non-covalently even after cleavage as revealed by immunoprecipitation of native and myctagged Ig-Hepta constructs that were transiently expressed in 293T cells. The dimer consisting of four chains, (130 kDa + 32 kDa)2, is linked by disulfide bonds. A fusion protein of the extracellular domain of Ig-Hepta and the Fc domain of immunoglobulin was found to be a good substrate of the processing enzymes and used for determining the exact cleavage sites in the SEA module and juxtamembrane stalk region.
CITATION STYLE
Abe, J., Fukuzawa, T., & Hirose, S. (2002). Cleavage of Ig-Hepta at a “SEA” module and at a conserved G protein-coupled receptor proteolytic site. Journal of Biological Chemistry, 277(26), 23391–23398. https://doi.org/10.1074/jbc.M110877200
Mendeley helps you to discover research relevant for your work.