Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.
CITATION STYLE
Poreba, M. (2019). Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biological Chemistry. Walter de Gruyter GmbH. https://doi.org/10.1515/hsz-2019-0135
Mendeley helps you to discover research relevant for your work.