Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

77Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

Cite

CITATION STYLE

APA

Sugai, H., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., … Zonca, A. (2020). Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 199(3–4), 1107–1117. https://doi.org/10.1007/s10909-019-02329-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free