The Relative Role of Mangroves on Wave Erosion Mitigation and Sediment Properties

25Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fringe mangroves face waves daily and are thought to protect against erosion in low wave energy sites and undergo erosion if exposed to high wave energy. We aimed to understand the effects of fringe mangroves on erosion and sediment dynamics and of wave exposure on seedling density at three sites of increasing wave energy. Sediment properties (mean grain size, sorting, and bulk density) were assessed within each site in unvegetated and mangrove-vegetated shores in wet and dry seasons. In addition, we estimated seasonal erosion/accretion rates for 2.4 years and seedling density in two zones from the forest edge with contrasting wave exposure. Regression analysis was carried out to explain sediment properties and erosion rate variance in response to the vegetation volume that opposes wave energy and to explain erosion rates in response to wave energy. Mangrove-vegetated shores reduced erosion rates from 3 to 15 times in the two sites with higher wave energy, while the vegetated site with the lowest wave energy experienced accretion compared to minor erosion along the unvegetated shore. Shores with greater Rhizophora mangle basal areas and vegetation volumes favored deposition of particles with low settling rates, different sediment classes, reduced erosion rates, and increased shoreline stability. Mangrove seedling density decreased between 2 and 43 times from the low wave exposure zone to the high wave exposure zone at the forest edge in studied sites. In order to increase vegetation volume, coastal adaptation based on mangroves must limit human disturbances and facilitate epiphytic relationships with oysters.

Cite

CITATION STYLE

APA

Sánchez-Núñez, D. A., Bernal, G., & Mancera Pineda, J. E. (2019). The Relative Role of Mangroves on Wave Erosion Mitigation and Sediment Properties. Estuaries and Coasts, 42(8), 2124–2138. https://doi.org/10.1007/s12237-019-00628-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free