Objective-The snake venom component rhodocetin-αβ (RCαβ) stimulates endothelial cell motility in an α2β1 integrin-independent manner. We aimed to elucidate its cellular and molecular mechanisms. Methods and Results-We identified neuropilin-1 (Nrp1) as a novel target of RCαβ by protein-chemical methods. RCαβ and vascular endothelial growth factor (VEGF)-A avidly bind to Nrp1. Instead of acting as VEGF receptor 2 coreceptor, Nrp1 associates upon RCαβ treatment with cMet. Furthermore, cell-based ELISAs and kinase inhibitor studies showed that RCαβ induces phosphorylation of tyrosines 1245/1235 and thus activation of cMet. Consequently, paxillin is phosphorylated at Y31, which is redistributed from streak-like focal adhesions to spot-like focal contacts at the cell perimeter, along with α2β1 integrin, thereby regulating cell-matrix interactions. Cortactin is abundant in the cell perimeter, where it is involved in the branching of the cortical actin network of lamellipodia, whereas tensile force-bearing actin stress fibers radiating from focal adhesions disappear together with zyxin, a focal adhesion marker, on RCαβ treatment. Conclusion-Our data demonstrate that (1) Nrp1 is a novel target for venom components, such as RCαβ; (2) Nrp1 coupled to cMet regulates the type of cell-matrix interactions in a manner involving paxillin phosphorylation; and (3) altered cell-matrix interactions determine endothelial cell migration and cellular force management. © 2013 American Heart Association, Inc.
CITATION STYLE
Niland, S., Ditkowski, B., Parrandier, D., Roth, L., Augustin, H., & Eble, J. A. (2013). Rhodocetin-αβ-induced neuropilin-1-cMet association triggers restructuring of matrix contacts in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), 544–554. https://doi.org/10.1161/ATVBAHA.112.00006
Mendeley helps you to discover research relevant for your work.