Low temperature sealing of anodized aluminum alloy for enhancing corrosion resistance

10Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Sealing as a post treatment of anodized aluminum is required to enhance the corrosion resistance by filling nanopores, which allow the penetration of corrosive media toward the base aluminum. We designed a mixed sealing solution with nickel acetate and ammonium fluoride by modifying traditional nickel fluoride cold sealing. The concentration of mixed sealing solution affected the reaction rate of sealing and corrosion current density of anodized aluminum alloy. The higher concentration of mixed sealing solution improved the sealing rate, which was represented by a decrease of corrosion current density of anodized aluminum alloy. However, a mixed sealing solution with 2/3 concentration of general nickel fluoride sealing solution operated at room temperature showed the lowest corrosion current density compared to traditional methods (e.g., nickel fluoride cold sealing (NFCS) and nickel acetate hot sealing) and other mixed sealing solutions. Moreover, the mixed sealing solution with 2/3 concentration of general NFCS had a lower risk for over sealing, which increases the corrosion current density by excessive dissolution of anodic oxide. Therefore, the mixed sealing solution with optimized conditions designed in this work possibly provides a new method for enhancing the corrosion resistance of anodized aluminum alloys.

Cite

CITATION STYLE

APA

Jo, H., Lee, S., Kim, D., & Lee, J. (2020). Low temperature sealing of anodized aluminum alloy for enhancing corrosion resistance. Materials, 13(21), 1–12. https://doi.org/10.3390/ma13214904

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free