Background Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. Results Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and 3H2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. Conclusions Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.
CITATION STYLE
Briggs, E. M., Ha, S., Mita, P., Brittingham, G., Sciamanna, I., Spadafora, C., & Logan, S. K. (2018). Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells. Mobile DNA, 9(1). https://doi.org/10.1186/s13100-017-0106-z
Mendeley helps you to discover research relevant for your work.