Cross time-frequency analysis for combining information of several sources: Application to estimation of spontaneous respiratory rate from photoplethysmography

11Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error { 0.00; 0.98 } mHz ({ 0.00; 0.31 } %) and the interquartile range error { 4.88; 6.59 } mHz ({ 1.60; 1.92 } %). The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration. © 2013 M. D. Peláez-Coca et al.

Cite

CITATION STYLE

APA

Peláez-Coca, M. D., Orini, M., Lázaro, J., Bailón, R., & Gil, E. (2013). Cross time-frequency analysis for combining information of several sources: Application to estimation of spontaneous respiratory rate from photoplethysmography. Computational and Mathematical Methods in Medicine, 2013. https://doi.org/10.1155/2013/631978

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free