Ultrafast spincrossover is studied in Fe-Co Prussian blue analogues using a dissipative quantum-mechanical model of a cobalt ion coupled to a breathing mode. All electronic interactions are treated on an equal footing. It is theoretically demonstrated that the divalent cobalt ion reaches 90% of the S = 3/2 value within 20 fs after photoexciting a low-spin Co3+ ion by an iron-to-cobalt charge transfer. The doublet-to-quartet spin crossover is significantly faster than the oscillation period of the breathing mode. The system relaxes to the lowest manifold of divalent cobalt (4 T 1) in 150-200 fs. Strong oscillations in spin-orbit coupling and the involvement of higher-lying quartets are found.
CITATION STYLE
Van Veenendaal, M. (2017). Ultrafast intersystem crossings in Fe-Co Prussian blue analogues. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06664-4
Mendeley helps you to discover research relevant for your work.