The nuclear-encoded proteins of the oxygen-evolving complex (OEC) of photosystem II are bound on the lumenal side of the thylakoid membrane and stabilize the manganese ion cluster forming the photosystem II electron donor side. The OEC proteins are released from their binding site(s) following light-induced degradation of reaction center II (RCII)-D1 protein in Chlamydomonas reinhardtii. The kinetics of OEC proteins release correlates with that of RCII-D1 protein degradation. Only a limited amount of RCII-D2 protein is degraded during the process, and no loss of the core proteins CP43 and CP47 is detected. The release of the OEC proteins is prevented when the photoinactivated RCII-D1 protein degradation is retarded by addition of 3-(3,5-dichlorophenyl)-1,1-dimethylurea or by a high PQH2/PQ ratio prevailing in membranes of the plastocyanin-deficient mutant Ac208. The released proteins are not degraded but persist in the thylakoid lumen for up to 8 h and reassociate with photosystem II when new D1 protein is synthesized in cells exposed to low light, thus allowing recovery of photosystem II function. Reassociation also occurs following D1 protein synthesis in darkness when RCII activity is only partially recovered. These results indicate that (i) the D1 protein participates in the formation of the lumenal OEC proteins binding site(s) and (ii) the photoinactivation of RCII-D1 protein does not alter the conformation of the donor side of photosystem II required for the binding of the OEC proteins.
CITATION STYLE
Eisenberg-Domovich, Y., Oelmüller, R., Herrmann, R. G., & Ohad, I. (1995). Role of the RCII-D1 protein in the reversible association of the oxygen-evolving complex proteins with the lumenal side of photosystem II. Journal of Biological Chemistry, 270(50), 30181–30186. https://doi.org/10.1074/jbc.270.50.30181
Mendeley helps you to discover research relevant for your work.