There is increasing evidence that vascular endothelial growth factor (VEGF) contributes to inflammation independent of its angiogenic functions. Targeting some of the components in endothelial Weibel-Palade bodies (WPBs) effectively inhibits VEGF-induced inflammation, but little is known about how VEGF regulates WPB exocytosis. In this study, we showed that VEGF receptor-2 (VEGFR2), but not VEGFR1, is responsible for VEGF-induced release of von Willebrand factor (vWF), a major marker of WPBs. This is in good contrast to VEGF-stimulated interleukin-6 release from endothelium, which is selectively mediated through VEGFR1. We further demonstrated that VEGFR2-initiated phospholipase C-γ1 (PLCγ1)/calcium signaling is important but insufficient for full vWF release, suggesting the possible participation of another effector pathway. We found that cAMP/protein kinase A (PKA) signaling is required for full vWF release. Importantly, a single mutation of Tyr1175 in the C terminus of VEGFR2, a tyrosine residue crucial for embryonic vasculogenesis, abolished vWF release, concomitant with defective activations of both PLCγ1 and PKA. These data suggest that Tyr1175 mediates both PLCγ1-dependent and PKA-dependent signaling pathways. Taken together, our results not only reveal a novel Tyr1175-mediated signaling pathway but also highlight a potentially new therapeutic target for the management of vascular inflammation. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Xiong, Y., Huo, Y., Chen, C., Zeng, H., Lu, X., Wei, C., … Luo, J. (2009). Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-γ1- and protein kinase A-dependent pathways. Journal of Biological Chemistry, 284(35), 23217–23224. https://doi.org/10.1074/jbc.M109.019679
Mendeley helps you to discover research relevant for your work.