Copper-67 (t1/2 = 2.58 days) decays by β− (Eβ-max: 562 keV) and γ-rays (93 keV and 185 keV) rendering it with potential for both radionuclide therapy and single-photon emission computed tomography (SPECT) imaging. Prompted by the recent breakthrough of 67Cu production with high specific activity, high radionuclidic purity, and sufficient quantities, the interest in the theranostic potential of 67Cu has been rekindled. This work addresses the practicability of developing 67Cu-labeled antibodies with substantially improved quality for cancer radioimmunotheranostics. Proof of concept is demonstrated with pertuzumab, a US-FDA-approved monoclonal antibody for combination therapies of HER2-positive breast cancer. With an average number of 1.9 chelators coupled to each antibody, we achieved a two-order of magnitude increase in radiolabeling efficiency compared to literature reports. In a preclinical therapeutic study, mice (n = 4–7/group) bearing HER2+ xenografts exhibited a 67Cu-dose dependent tumor-growth inhibition from 67Cu-labeled-Pertuzumab co-administered with trastuzumab. Furthermore, greater tumor size reduction was observed with 67Cu-labeled-pertuzumab formulations of higher specific activity. The potential of SPECT imaging with 67Cu radiopharmaceuticals was tested after 67Cu-labeled-Pertuzumab administration. Impressively, all tumors were clearly visualized by SPECT imaging with 67Cu-labeled-Pertuzumab even at day 5 post injection. This work demonstrates it is practical to use 67Cu radioimmunoconjugates for cancer radioimmunotheranostics.
CITATION STYLE
Hao, G., Mastren, T., Silvers, W., Hassan, G., Öz, O. K., & Sun, X. (2021). Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82812-1
Mendeley helps you to discover research relevant for your work.