A secure reset operation could be an enabling technology that allows sharing of a quantum computer among different users, or among different quantum programs of the same user. Today, the dominant method to erase the qubit state is a full system wipe, which effectively resets all the qubits at the same time. In today's superconducting qubit machines from IBM, for example, a full system wipe takes up to 1000 μs, and it fully erases all information in the system. However, with a full system wipe there is no means for only a few qubits to be cleared and assigned to a new user or program; everything has to be erased at the same time. A secure reset operation could allow resetting only a subset of qubits, and it could be built upon existing (insecure) reset operation available from superconducting qubit machines from IBM, for example. The (insecure) reset operation is available today, which can be used to reset the state of a qubit in a time on the order of 10 μs down to 1 μs. The reset operation is thus much faster than a full system wipe. However, as this work demonstrates, it is possible to leak some information across the (insecure) reset operation as it does not perfectly reset the qubit state between two users or programs who may be sequentially scheduled on the same qubit. Further, crosstalk-like effects are observed where reset behavior of one qubit can be inferred from an adjacent qubit. This work analyzes the existing (insecure) reset operation in order to understand how a secure reset operation could be built upon it. This work then describes the design, implementation, and evaluation of the proposed secure reset operation which can reset qubits without leaking information, and retains a factor of 300 speedup over a full system∼wipe.
CITATION STYLE
Mi, A., Deng, S., & Szefer, J. (2022). Securing Reset Operations in NISQ Quantum Computers. In Proceedings of the ACM Conference on Computer and Communications Security (pp. 2279–2293). Association for Computing Machinery. https://doi.org/10.1145/3548606.3559380
Mendeley helps you to discover research relevant for your work.