The purpose of the study is to assess the influence of SiC particles and heat treatment on the wear behaviour of Ni–P coatings when in contact with a 100Cr6 steel. Addition of reinforcing particles and heat treatment are two common methods to increase Ni–P hardness. Ball-on-disc wear tests coupled with SEM investigations were used to compare as-plated and heat-treated coatings, both pure and composite ones, and to evaluate the wear mechanisms. In the as-plated coatings, the presence of SiC particles determined higher friction coefficient and wear rate than the pure Ni–P coatings, despite the limited increase in hardness, of about 15%. The effect of SiC particles was shown in combination with heat treatment. The maximum hardness in pure Ni–P coating was achieved by heating at 400◦C for 1 h while for composite coatings heating for 2 h at 360◦C was sufficient to obtain the maximum hardness. The difference between the friction coefficient of composite and pure coatings was disclosed by heating at 300◦C for 2 h. In other cases, the coefficient of friction (COF) stabilised at similar values. The wear mechanisms involved were mainly abrasion and tribo-oxidation, with the formation of lubricant Fe oxides produced at the counterpart.
CITATION STYLE
Ahmadkhaniha, D., Lattanzi, L., Bonora, F., Fortini, A., Merlin, M., & Zanella, C. (2021). The effect of co-deposition of sic sub-micron particles and heat treatment on wear behaviour of ni–p coatings. Coatings, 11(2), 1–16. https://doi.org/10.3390/coatings11020180
Mendeley helps you to discover research relevant for your work.