Mammalian testis: A target of in vivo electroporation

8Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Mammalian spermatogenesis consists of three biologically significant processes: stem cell self-renewal and differentiation, meiosis, and haploid cell morphogenesis. Understanding the molecular mechanisms behind these processes might provide clues to the puzzle of species preservation and evolution, and to treatments for male infertility. However, few useful in vitro systems exist to investigate these processes at present. To elucidate these mechanisms, in vivo electroporation of the testis might be a convenient option. Since DNA solution can be injected into the seminiferous tubule via the rete testis, similar to germ cell transplantation, it is easy to transfect expression vectors into various differentiated germ cells and supporting Sertoli cells with adequate electric shock. Unfortunately, it is difficult to create transgenic animals using this method because of its low efficiency. However, gain- and loss-of-function assays, promoter assays, and tagged-protein behavior assays can be conducted with this technique, as in in vitro culture systems. © 2008 The Author.

Cite

CITATION STYLE

APA

Yomgogida, K. (2008, August). Mammalian testis: A target of in vivo electroporation. Development Growth and Differentiation. https://doi.org/10.1111/j.1440-169X.2008.01042.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free