Mapping the 3D structures of small molecule binding sites

12Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Analysis of the 3D structures of protein-ligand binding sites can provide valuable insights for drug discovery. Binding site comparison (BSC) studies can be employed to elucidate the function of orphan proteins or to predict the potential for polypharmacology. Many previous binding site analyses only consider binding sites surrounding an experimentally observed bound ligand. Results: To encompass potential protein-ligand binding sites that do not have ligands known to bind, we have incorporated fpocket cavity detection software and assessed the impact of this inclusion on BSC performance. Using fpocket, we generated a database of ligand-independent potential binding sites and applied the BSC tool, SiteHopper, to analyze similarity relationships between protein binding sites. We developed a method for clustering potential binding sites using a curated dataset of structures for six therapeutically relevant proteins from diverse protein classes in the protein data bank. Two clustering methods were explored; hierarchical clustering and a density-based method adept at excluding noise and outliers from a dataset. We introduce circular plots to visualize binding site structure space. From the datasets analyzed in this study, we highlight a structural relationship between binding sites of cationic trypsin and prothrombin, protein targets known to bind structurally similar small molecules, exemplifying the potential utility of objectively and holistically mapping binding site space from the structural proteome. Conclusions: We present a workflow for the objective mapping of potential protein-ligand binding sites derived from the currently available structural proteome. We show that ligand-independent binding site detection tools can be introduced without excessive penalty on BSC performance. Clustering combined with intuitive visualization tools can be applied to map relationships between the 3D structures of protein binding sites.

Cite

CITATION STYLE

APA

Meyers, J., Brown, N., & Blagg, J. (2016). Mapping the 3D structures of small molecule binding sites. Journal of Cheminformatics, 8(1), 1–13. https://doi.org/10.1186/s13321-016-0180-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free