Global Dynamics of a Novel Delayed Logistic Equation Arising from Cell Biology

13Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The delayed logistic equation (also known as Hutchinson’s equation or Wright’s equation) was originally introduced to explain oscillatory phenomena in ecological dynamics. While it motivated the development of a large number of mathematical tools in the study of nonlinear delay differential equations, it also received criticism from modellers because of the lack of a mechanistic biological derivation and interpretation. Here, we propose a new delayed logistic equation, which has clear biological underpinning coming from cell population modelling. This nonlinear differential equation includes terms with discrete and distributed delays. The global dynamics is completely described, and it is proven that all feasible non-trivial solutions converge to the positive equilibrium. The main tools of the proof rely on persistence theory, comparison principles and an L2-perturbation technique. Using local invariant manifolds, a unique heteroclinic orbit is constructed that connects the unstable zero and the stable positive equilibrium, and we show that these three complete orbits constitute the global attractor of the system. Despite global attractivity, the dynamics is not trivial as we can observe long-lasting transient oscillatory patterns of various shapes. We also discuss the biological implications of these findings and their relations to other logistic-type models of growth with delays.

Cite

CITATION STYLE

APA

Baker, R. E., & Röst, G. (2020). Global Dynamics of a Novel Delayed Logistic Equation Arising from Cell Biology. Journal of Nonlinear Science, 30(1), 397–418. https://doi.org/10.1007/s00332-019-09577-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free