Climate change will impact bioclimatic drivers that regulate the geospatial distribution of dryland agro-ecological classes (AECs). Characterizing the geospatial relationship between present AECs and their bioclimatic controls will provide insights into potential future shifts in AECs as climate changes. The major objectives of this study are to quantify empirical relationships between bioclimatic variables and the current geospatial distribution of six dryland AECs of the inland Pacific Northwest (iPNW) of the United States; and apply bioclimatic projections from downscaled climate models to assess geospatial shifts of AECs under current production practices. Two Random Forest variable selection algorithms, VarSelRF and Boruta, were used to identify relevant bioclimatic variables. Three bioclimatic variables were identified by VarSelRF as useful for predictive Random Forest modeling of six AECs: (1) Holdridge evapotranspiration index; (2) spring precipitation (March, April, and May); and (3) precipitation of the warmest 4-month season (June, July, August, and September). Super-imposing future climate scenarios onto current agricultural production systems resulted in significant geospatial shifts in AECs. The Random Forest model projected a 58 and 63% increase in area under dynamic annual crop-fallow-transition (AC-T) and dynamic grain-fallow (GF) AECs, respectively. By contrast, a 46% decrease in area was projected for stable AC-T and dynamic annual crop (AC) AECs across all future time periods for Representative Concentration Pathway (RCP) 8.5. For the same scenarios, the stable AC and GF AECs showed the least declines in area (8 and 13%, respectively), compared to other AECs. Future spatial shifts from stable to dynamic AECs, particularly to dynamic AC-T and dynamic GF AECs would result in more use of fallow, a greater hazard for soil erosion, greater cropping system uncertainty, and potentially less cropping system flexibility. These projections are counter to cropping system goals of increasing intensification, diversification, and productivity.
CITATION STYLE
Kaur, H., Huggins, D. R., Rupp, R. A., Abatzoglou, J. T., Stöckle, C. O., & Reganold, J. P. (2017). Agro-ecological class stability decreases in response to climate change projections for the Pacific Northwest, USA. Frontiers in Ecology and Evolution, 5(JUL). https://doi.org/10.3389/fevo.2017.00074
Mendeley helps you to discover research relevant for your work.